In medical imaging procedures for the detection of coronavirus, apart from medical tests, approval of diagnosis has special significance. Imaging procedures are also useful for detecting the damage caused by COVID-19. Chest X-ray imaging is frequently used to diagnose COVID-19 and different pneumonias. This paper presents a task-specific framework to detect coronavirus in X-ray images. Binary classification of three different labels (healthy, bacterial pneumonia, and COVID-19) was performed on two differentiated data sets in which corona is stated as positive. First-order statistics, gray level co-occurrence matrix, gray level run length matrix, and gray level size zone matrix were analyzed to form fifteen sub-data sets and to ascertain the necessary radiomics. Two normalization methods are compared to make the data meaningful. Furthermore, five feature ranking approaches (
Bhattacharyya
,
entropy
,
Roc
,
t-test
, and
Wilcoxon
) are mentioned to provide necessary information to a state-of-the-art classifier based on Gauss-map-based chaotic particle swarm optimization and neural networks. The proposed framework was designed according to the analyses about radiomics, normalization approaches, and filter-based feature ranking methods. In experiments, seven metrics were evaluated to objectively determine the results: accuracy, area under the receiver operating characteristic (ROC) curve, sensitivity, specificity, g-mean, precision, and f-measure. The proposed framework showed promising scores on two X-ray-based data sets, especially with the accuracy and area under the ROC curve rates exceeding 99% for the classification of coronavirus
vs
. others.