Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In this study, cobalt-zinc ferrite (Co0.5Zn0.5Fe2O4) was obtained by the glycine-nitrate method followed by annealing in a high-temperature furnace at a temperature of 1300 °С. The qualitative composition and its microstructural characteristics were determined using energy-dispersive X-ray spectroscopy, X-ray diffraction analysis, and scanning electron microscopy.The analysis of the micrographs demonstrated that the cobalt-zinc ferrite micropowder obtained after thermal annealing has an average particle size of 1.7±1 μm. The analysis of XRD data showed that the annealed cobalt-zinc ferrite micropowder has a cubic crystal structure with a lattice parameter of a = 8.415 Å. Using the Scherrer and Williamson-Hall equations we calculated the average sizes of the coherent scattering regions, which were commensurate with the size of crystallites: according to the Scherrer equation D = 28.26 nm and according to the Williamson-Hall equation D = 33.59 nm and the microstress value e = 5.62×10–4 in the ferrite structure.Using a vector network analyser, the electromagnetic properties of a composite material based on synthesized cobalt-zinc ferrite were determined. The frequency dependences of the magnetic and dielectric permeability values from the measured S-parameters of the composite material (50% ferrite filler by weight and 50% paraffin) were determined using the Nicolson-Ross-Weir method and were in the range of 0.015–7 GHz. The analysis of the graphs of the dependence of the magnetic permeability on the frequency of electromagnetic radiation revealed a resonance frequency of fr ≈ 2.3 GHz. The discoveredmagnetic resonance in the UHF range allows the obtained material to be considered as being promising for use as an effective absorber of electromagnetic radiation in the range of 2–2.5 GHz. References 1. Thakur P., Chahar D., Taneja S., Bhalla N. andThakur A. A review on MnZn ferrites: Synthesis,characterization and applications. CeramicsInternational. 2020;46(10): 15740–15763. DOI: https://doi.org/10.1016/j.ceramint.2020.03.2872. Pullar R. C. Hexagonal ferrites: A review of thesynthesis, properties and applications of hexaferriteceramics. Progress in Materials Science. 2012;57(7):1191–1334. DOI: https://doi.org/10.1016/j.pmatsci.2012.04.0013. Kharisov B. I., Dias H. V. R., Kharissova O. V.Mini-review: Ferrite nanoparticles in the catalysis.Arabian Journal of Chemistry. 2019;12(7): 1234–1246.DOI: https://doi.org/10.1016/j.arabjc.2014.10.0494. Stergiou C. Microstructure and electromagneticproperties of Ni-Zn-Co ferrite up to 20 GHz. Advancesin Materials Science and Engineering. 2016;2016: 1–7.DOI: https://doi.org/10.1155/2016/19347835. Economos G. Magnetic ceramics: I, Generalmethods of magnetic ferrite preparation. Journal of theAmerican Ceramic Society. 1955;38(7): 241–244. DOI:https://doi.org/10.1111/j.1151-2916.1955.tb14938.x6. Yurkov G. Y., Shashkeev K. A., Kondrashov S. V.,Popkov O. V., Shcherbakova G. I., Zhigalov D. V.,Pankratov D. A., Ovchenkov E. A., Koksharov Y. A.Synthesis and magnetic properties of cobalt ferritenanoparticles in polycarbosilane ceramic matrix.Journal of Alloys and Compounds. 2016;686: 421–430.DOI: https://doi.org/10.1016/j.jallcom.2016.06.0257. Karakaş Z. K., Boncukçuoğlu R., Karakaş İ. H.The effects of fuel type in synthesis of NiFe2O4nanoparticles by microwave assisted combustionmethod. Journal of Physics: Conference Series. 2016;707: 012046. DOI: https://doi.org/10.1088/1742-6596/707/1/0120468. Shirsath S. E., Jadhav S. S., Mane M. L., Li S.Handbook of sol-gel science and technology. Springer,Cham.; 2016. p. 1–41. DOI: https://doi.org/10.1007/978-3-319-19454-7_125-19. Vyzulin S. A., Kalikintseva D. A., MiroshnichenkoE. L., Buz’ko V. Y., Goryachko A. I. Microwaveabsorption properties of nickel–zinc ferritessynthesized by different means. Bulletin of the RussianAcademy of Sciences: Physics. 2018;82(8): 943–945.DOI: https://doi.org/10.3103/s106287381808043910. Janasi S. R., Emura M., Landgraf F. J. G.,Rodrigues D. The effects of synthesis variables on themagnetic properties of coprecipitated barium ferritepowders. Journal of Magnetism and Magnetic Materials.2002;238(2-3): 168–172. DOI: https://doi.org/10.1016/s0304-8853(01)00857-511. Ahmed Y. M. Z. Synthesis of manganese ferritefrom non-standard raw materials using ceramictechnique. Ceramics International. 2010;36(3): 969–977. DOI: https://doi.org/10.1016/j.ceramint.2009.11.02012. Mahadule R. K., Arjunwadkar P. R., MahaboleM. P. Synthesis and characterization ofCaxSryBa1–x–yFe12–zLazO19 by standard ceramic method.International Journal of Metals. 2013;2013: 1–7. DOI:https://doi.org/10.1155/2013/19897013. Tarța V. F., Chicinaş I., Marinca T. F.,Neamţu B. V., Popa F., Prica C. V. Synthesis of thenanocrystalline/nnosized NiFe2O4 powder by ceramicmethod and mechanical milling. Solid State Phenomena.2012;188: 27–30. DOI: https://doi.org/10.4028/www.scientific.net/ssp.188.2714. Pradhan A. K., Saha S., Nath T. K. AC and DCelectrical conductivity, dielectric and magneticproperties of Co0.65Zn0.35Fe2−xMoxO4 (x = 0.0, 0.1 and 0.2)ferrites. Applied Physics A. 2017;123(11): 715. DOI:https://doi.org/10.1007/s00339-017-1329-z15. Low Z. H., Ismail I., Tan K. S. Sinteringprocessing of complex magnetic ceramic oxides: Acomparison between sintering of bottom-up approachsynthesis and mechanochemical process of top-downapproach synthesis. Sintering Technology - Method andApplication. Malin Liu (ed.). 2018: 25–43. DOI: https://doi.org/10.5772/intechopen.7865416. Costa A. C. F. M., Morelli M. R., KiminamiR. H. G. A. Combustion synthesis: Effect of urea onthe reaction and characteristics of Ni–Zn ferritepowders. Journal of Materials Synthesis and Processing.2001; 9(6): 347–352. DOI: https://doi.org/10.1023/A:101635662340117. Maleknejad Z., Gheisari K., Raouf A. H.Structure, microstructure, magnetic, electromagnetic,and dielectric properties of nanostructured Mn–Znferrite synthesized by microwave-induced urea–nitrate process. Journal of Superconductivity and NovelMagnetism. 2016;29(10): 2523–2534. DOI: https://doi.org/10.1007/s10948-016-3572-518. Jalaiah K., Chandra Mouli K., Vijaya Babu K.,Krishnaiah R.V. The structural, DC resistivity andmagnetic properties of Mg and Zr Co-substitutedNi0.5Zn0.5Fe2O4. Journal of Science: Advanced Materialsand Devices. 2018;4(2): 310–318 DOI: https://doi.org/10.1016/j.jsamd.2018.12.00419. Yue Z., Zhou J., Li L., Zhang H., Gui Z. Synthesisof nanocrystalline NiCuZn ferrite powders by sol–gelauto-combustion method. Journal of Magnetism andMagnetic Materials. 2000;208(1-2): 55–60. DOI:https://doi.org/10.1016/s0304-8853(99)00566-120. Chick L. A., Pederson L. R., Maupin G. D.,Bates J. L., Thomas L. E., Exarhos G. J. Glycine-nitratecombustion synthesis of oxide ceramic powders.Materials Letters. 1990;10(1-2): 6–12. DOI: https://doi.org/10.1016/0167-577x(90)90003-521. Salunkhe A. B., Khot V. M., Phadatare M. R.,Pawar S. H. Combustion synthesis of cobalt ferritenanoparticles—Influence of fuel to oxidizer ratio.Journal of Alloys and Compounds. 2012;514: 91–96.DOI: https://doi.org/10.1016/j.jallcom.2011.10.09422. Martinson K. D., Cherepkova I. A., Sokolov V. V.Formation of cobalt ferrite nanoparticles via glycine-nitrate combustion and their magnetic properties.Glass Physics and Chemistry. 2018;44(1): 21–25.DOI: https://doi.org/10.1134/s108765961801009123. Kuzmin V. A., Zagrai I. A. A comprehensivestudy of combustion products generated from pulverizedpeat combustion in the furnace of BKZ-210-140Fsteam boiler. Journal of Physics: Conference Series.2017;891: 012226. DOI: https://doi.org/10.1088/1742-6596/891/1/01222624. Maleki A., Hosseini N., Taherizadeh A. Synthesisand characterization of cobalt ferrite nanoparticlesprepared by the glycine-nitrate process. Ceramics International.2018;44(7): 8576–8581. DOI: https://doi.org/10.1016/j.ceramint.2018.02.06325. Waje S. B., Hashim M., Wan Yusoff W. D., AbbasZ. Sintering temperature dependence of roomtemperature magnetic and dielectric properties ofCo0.5Zn0.5Fe2O4 prepared using mechanically alloyednanoparticles. Journal of Magnetism and MagneticMaterials. 2010;322(6): 686–691. DOI: https://doi.org/10.1016/j.jmmm.2009.10.04126. Nicolson A. M., Ross G. F. Measurement of theintrinsic properties of materials by time-domain techniques.IEEE Transactions on Instrumentation andMeasurement. 1970;19(4): 377–382. DOI: https://doi.org/10.1109/tim.1970.431393227. Rothwell E. J., Frasch J. L., Ellison S. M., ChahalP., Ouedraogo R.O. Analysis of the Nicolson-Ross-Weir method for characterizing the electromagneticproperties of engineered materials. ProgressIn Electromagnetics Research. 2016;157: 31–47. DOI:https://doi.org/10.2528/pier1607170628. Vicente A. N., Dip G. M., Junqueira C. The stepby step development of NRW method. ProceedingsArticle in: 2011 SBMO/IEEE MTT-S International Microwaveand Optoelectronics Conference (IMOC 2011).29 Oct. –1 Nov. 2011. 738–742. DOI: https://doi.org/10.1109/imoc.2011.616931829. Ivanin S. N., Buz’ko V. Yu., Goryachko A. I.,Panyushkin V. T. Electromagnetic characteristics ofheteroligand complexes of gadolinium stearate. RussianJournal of Physical Chemistry A. 2020;94(8):1623–1627. DOI: https://doi.org/10.1134/S003602442008013030. Liu Y.-W., Zhang J., Gu L.-S., Wang L.-X.,Zhang Q.-T. Preparation and electromagnetic propertiesof nanosized Co0.5Zn0.5Fe2O4 ferrite. Rare Metals. 2016.DOI: https://doi.org/10.1007/s12598-015-0670-7
In this study, cobalt-zinc ferrite (Co0.5Zn0.5Fe2O4) was obtained by the glycine-nitrate method followed by annealing in a high-temperature furnace at a temperature of 1300 °С. The qualitative composition and its microstructural characteristics were determined using energy-dispersive X-ray spectroscopy, X-ray diffraction analysis, and scanning electron microscopy.The analysis of the micrographs demonstrated that the cobalt-zinc ferrite micropowder obtained after thermal annealing has an average particle size of 1.7±1 μm. The analysis of XRD data showed that the annealed cobalt-zinc ferrite micropowder has a cubic crystal structure with a lattice parameter of a = 8.415 Å. Using the Scherrer and Williamson-Hall equations we calculated the average sizes of the coherent scattering regions, which were commensurate with the size of crystallites: according to the Scherrer equation D = 28.26 nm and according to the Williamson-Hall equation D = 33.59 nm and the microstress value e = 5.62×10–4 in the ferrite structure.Using a vector network analyser, the electromagnetic properties of a composite material based on synthesized cobalt-zinc ferrite were determined. The frequency dependences of the magnetic and dielectric permeability values from the measured S-parameters of the composite material (50% ferrite filler by weight and 50% paraffin) were determined using the Nicolson-Ross-Weir method and were in the range of 0.015–7 GHz. The analysis of the graphs of the dependence of the magnetic permeability on the frequency of electromagnetic radiation revealed a resonance frequency of fr ≈ 2.3 GHz. The discoveredmagnetic resonance in the UHF range allows the obtained material to be considered as being promising for use as an effective absorber of electromagnetic radiation in the range of 2–2.5 GHz. References 1. Thakur P., Chahar D., Taneja S., Bhalla N. andThakur A. A review on MnZn ferrites: Synthesis,characterization and applications. CeramicsInternational. 2020;46(10): 15740–15763. DOI: https://doi.org/10.1016/j.ceramint.2020.03.2872. Pullar R. C. Hexagonal ferrites: A review of thesynthesis, properties and applications of hexaferriteceramics. Progress in Materials Science. 2012;57(7):1191–1334. DOI: https://doi.org/10.1016/j.pmatsci.2012.04.0013. Kharisov B. I., Dias H. V. R., Kharissova O. V.Mini-review: Ferrite nanoparticles in the catalysis.Arabian Journal of Chemistry. 2019;12(7): 1234–1246.DOI: https://doi.org/10.1016/j.arabjc.2014.10.0494. Stergiou C. Microstructure and electromagneticproperties of Ni-Zn-Co ferrite up to 20 GHz. Advancesin Materials Science and Engineering. 2016;2016: 1–7.DOI: https://doi.org/10.1155/2016/19347835. Economos G. Magnetic ceramics: I, Generalmethods of magnetic ferrite preparation. Journal of theAmerican Ceramic Society. 1955;38(7): 241–244. DOI:https://doi.org/10.1111/j.1151-2916.1955.tb14938.x6. Yurkov G. Y., Shashkeev K. A., Kondrashov S. V.,Popkov O. V., Shcherbakova G. I., Zhigalov D. V.,Pankratov D. A., Ovchenkov E. A., Koksharov Y. A.Synthesis and magnetic properties of cobalt ferritenanoparticles in polycarbosilane ceramic matrix.Journal of Alloys and Compounds. 2016;686: 421–430.DOI: https://doi.org/10.1016/j.jallcom.2016.06.0257. Karakaş Z. K., Boncukçuoğlu R., Karakaş İ. H.The effects of fuel type in synthesis of NiFe2O4nanoparticles by microwave assisted combustionmethod. Journal of Physics: Conference Series. 2016;707: 012046. DOI: https://doi.org/10.1088/1742-6596/707/1/0120468. Shirsath S. E., Jadhav S. S., Mane M. L., Li S.Handbook of sol-gel science and technology. Springer,Cham.; 2016. p. 1–41. DOI: https://doi.org/10.1007/978-3-319-19454-7_125-19. Vyzulin S. A., Kalikintseva D. A., MiroshnichenkoE. L., Buz’ko V. Y., Goryachko A. I. Microwaveabsorption properties of nickel–zinc ferritessynthesized by different means. Bulletin of the RussianAcademy of Sciences: Physics. 2018;82(8): 943–945.DOI: https://doi.org/10.3103/s106287381808043910. Janasi S. R., Emura M., Landgraf F. J. G.,Rodrigues D. The effects of synthesis variables on themagnetic properties of coprecipitated barium ferritepowders. Journal of Magnetism and Magnetic Materials.2002;238(2-3): 168–172. DOI: https://doi.org/10.1016/s0304-8853(01)00857-511. Ahmed Y. M. Z. Synthesis of manganese ferritefrom non-standard raw materials using ceramictechnique. Ceramics International. 2010;36(3): 969–977. DOI: https://doi.org/10.1016/j.ceramint.2009.11.02012. Mahadule R. K., Arjunwadkar P. R., MahaboleM. P. Synthesis and characterization ofCaxSryBa1–x–yFe12–zLazO19 by standard ceramic method.International Journal of Metals. 2013;2013: 1–7. DOI:https://doi.org/10.1155/2013/19897013. Tarța V. F., Chicinaş I., Marinca T. F.,Neamţu B. V., Popa F., Prica C. V. Synthesis of thenanocrystalline/nnosized NiFe2O4 powder by ceramicmethod and mechanical milling. Solid State Phenomena.2012;188: 27–30. DOI: https://doi.org/10.4028/www.scientific.net/ssp.188.2714. Pradhan A. K., Saha S., Nath T. K. AC and DCelectrical conductivity, dielectric and magneticproperties of Co0.65Zn0.35Fe2−xMoxO4 (x = 0.0, 0.1 and 0.2)ferrites. Applied Physics A. 2017;123(11): 715. DOI:https://doi.org/10.1007/s00339-017-1329-z15. Low Z. H., Ismail I., Tan K. S. Sinteringprocessing of complex magnetic ceramic oxides: Acomparison between sintering of bottom-up approachsynthesis and mechanochemical process of top-downapproach synthesis. Sintering Technology - Method andApplication. Malin Liu (ed.). 2018: 25–43. DOI: https://doi.org/10.5772/intechopen.7865416. Costa A. C. F. M., Morelli M. R., KiminamiR. H. G. A. Combustion synthesis: Effect of urea onthe reaction and characteristics of Ni–Zn ferritepowders. Journal of Materials Synthesis and Processing.2001; 9(6): 347–352. DOI: https://doi.org/10.1023/A:101635662340117. Maleknejad Z., Gheisari K., Raouf A. H.Structure, microstructure, magnetic, electromagnetic,and dielectric properties of nanostructured Mn–Znferrite synthesized by microwave-induced urea–nitrate process. Journal of Superconductivity and NovelMagnetism. 2016;29(10): 2523–2534. DOI: https://doi.org/10.1007/s10948-016-3572-518. Jalaiah K., Chandra Mouli K., Vijaya Babu K.,Krishnaiah R.V. The structural, DC resistivity andmagnetic properties of Mg and Zr Co-substitutedNi0.5Zn0.5Fe2O4. Journal of Science: Advanced Materialsand Devices. 2018;4(2): 310–318 DOI: https://doi.org/10.1016/j.jsamd.2018.12.00419. Yue Z., Zhou J., Li L., Zhang H., Gui Z. Synthesisof nanocrystalline NiCuZn ferrite powders by sol–gelauto-combustion method. Journal of Magnetism andMagnetic Materials. 2000;208(1-2): 55–60. DOI:https://doi.org/10.1016/s0304-8853(99)00566-120. Chick L. A., Pederson L. R., Maupin G. D.,Bates J. L., Thomas L. E., Exarhos G. J. Glycine-nitratecombustion synthesis of oxide ceramic powders.Materials Letters. 1990;10(1-2): 6–12. DOI: https://doi.org/10.1016/0167-577x(90)90003-521. Salunkhe A. B., Khot V. M., Phadatare M. R.,Pawar S. H. Combustion synthesis of cobalt ferritenanoparticles—Influence of fuel to oxidizer ratio.Journal of Alloys and Compounds. 2012;514: 91–96.DOI: https://doi.org/10.1016/j.jallcom.2011.10.09422. Martinson K. D., Cherepkova I. A., Sokolov V. V.Formation of cobalt ferrite nanoparticles via glycine-nitrate combustion and their magnetic properties.Glass Physics and Chemistry. 2018;44(1): 21–25.DOI: https://doi.org/10.1134/s108765961801009123. Kuzmin V. A., Zagrai I. A. A comprehensivestudy of combustion products generated from pulverizedpeat combustion in the furnace of BKZ-210-140Fsteam boiler. Journal of Physics: Conference Series.2017;891: 012226. DOI: https://doi.org/10.1088/1742-6596/891/1/01222624. Maleki A., Hosseini N., Taherizadeh A. Synthesisand characterization of cobalt ferrite nanoparticlesprepared by the glycine-nitrate process. Ceramics International.2018;44(7): 8576–8581. DOI: https://doi.org/10.1016/j.ceramint.2018.02.06325. Waje S. B., Hashim M., Wan Yusoff W. D., AbbasZ. Sintering temperature dependence of roomtemperature magnetic and dielectric properties ofCo0.5Zn0.5Fe2O4 prepared using mechanically alloyednanoparticles. Journal of Magnetism and MagneticMaterials. 2010;322(6): 686–691. DOI: https://doi.org/10.1016/j.jmmm.2009.10.04126. Nicolson A. M., Ross G. F. Measurement of theintrinsic properties of materials by time-domain techniques.IEEE Transactions on Instrumentation andMeasurement. 1970;19(4): 377–382. DOI: https://doi.org/10.1109/tim.1970.431393227. Rothwell E. J., Frasch J. L., Ellison S. M., ChahalP., Ouedraogo R.O. Analysis of the Nicolson-Ross-Weir method for characterizing the electromagneticproperties of engineered materials. ProgressIn Electromagnetics Research. 2016;157: 31–47. DOI:https://doi.org/10.2528/pier1607170628. Vicente A. N., Dip G. M., Junqueira C. The stepby step development of NRW method. ProceedingsArticle in: 2011 SBMO/IEEE MTT-S International Microwaveand Optoelectronics Conference (IMOC 2011).29 Oct. –1 Nov. 2011. 738–742. DOI: https://doi.org/10.1109/imoc.2011.616931829. Ivanin S. N., Buz’ko V. Yu., Goryachko A. I.,Panyushkin V. T. Electromagnetic characteristics ofheteroligand complexes of gadolinium stearate. RussianJournal of Physical Chemistry A. 2020;94(8):1623–1627. DOI: https://doi.org/10.1134/S003602442008013030. Liu Y.-W., Zhang J., Gu L.-S., Wang L.-X.,Zhang Q.-T. Preparation and electromagnetic propertiesof nanosized Co0.5Zn0.5Fe2O4 ferrite. Rare Metals. 2016.DOI: https://doi.org/10.1007/s12598-015-0670-7
Experimental and numerical study of co-firing peat with different gaseous fuels in the vortex burner are carried out. At the “lean” operational regimes co-firing peat with syngas is more effective and allows to organize reliable ignition and stable combustion at the values of excess air coefficient up to αΣ = 2.7. In addition, co-firing with syngas requires less initial methane to produce it applying catalytic reforming than direct co-firing with methane. Also, syngas supply into vortex burner allows to reduce combustion temperature and emission of NOx.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.