The local structure of K0.5Na0.5NbO3 is investigated using first-principles methods with an optimized special quasirandom structure (SQS). Through a comparison of the computed pair distribution functions with those from neutron powder diffraction data, the SQS approach demonstrates its ability to accurately capture the local structure patterns derived from the random distribution of K and Na on the perovskite Asite. Using these structures, local variations in Na-O interactions are suggested to be the driving force behind the R3c to Pm phase transition. A comparison between the SQS and a rocksalt structure shows the inability of the latter to account for the local variability present in a random solid solution. As such, the predictive nature of the SQS demonstrated here suggests that this approach may provide insight in understanding the properties of a wide range of bulk oxide alloys or solid solutions.
Disciplines
Polymer and Organic Materials | Process Control and Systems | Structural Materials
CommentsThis article is from Physical Review B 90 (2014) The local structure of K 0.5 Na 0.5 NbO 3 is investigated using first-principles methods with an optimized special quasirandom structure (SQS). Through a comparison of the computed pair distribution functions with those from neutron powder diffraction data, the SQS approach demonstrates its ability to accurately capture the local structure patterns derived from the random distribution of K and Na on the perovskite A-site. Using these structures, local variations in Na-O interactions are suggested to be the driving force behind the R3c to P m phase transition. A comparison between the SQS and a rocksalt structure shows the inability of the latter to account for the local variability present in a random solid solution. As such, the predictive nature of the SQS demonstrated here suggests that this approach may provide insight in understanding the properties of a wide range of bulk oxide alloys or solid solutions.