This is crucial for the successful operation of a Wireless Sensor Network, frequently called as WSN as each of the sensor nodes in the network's structure are in charge of transmitting the information from its original source to its final destination. Several researchers have developed a Mobile sink in an effort to enhance transmission quality. Although it has been shown to be beneficial, the network's overall reliability is compromised by the much more energy-intensive operation of the nodes. In this research, we offer a routing strategy that makes use of cluster and source portability to drastically reduce power usage. We have given this protocol its name: the Intelligent Mobile Sink Assisted Routing Protocol (IMSARP). To get started, we divide an entire sensor environment into regions, and within each of them, members cast proportional votes to choose who will serve as the Cluster-Head (CH). To determine how to choose the most efficient choice, nodes in the network evaluate the power consumption of all feasible routes. The proposed IMSARP method uses a cluster-based paradigm to construct a mobile-sink routing protocol. The standard quantity of energy within all the clusters serves as what drives the sink's motion. The outcomes section of this research proves the legitimacy and maintains the credibility of the proposed system by presenting the results, which include throughput, delay reduction, energy efficiency, and data transfer rate.