This paper proposes a statistically matched wavelet based textured image coding scheme for efficient representation of texture data in a compressive sensing (CS) frame work. Statistically matched wavelet based data representation causes most of the captured energy to be concentrated in the approximation subspace, while very little information remains in the detail subspace. We encode not the full-resolution statistically matched wavelet subband coefficients but only the approximation subband coefficients (LL) using standard image compression scheme like JPEG2000. The detail subband coefficients, that is, HL, LH, and HH, are jointly encoded in a compressive sensing framework. Compressive sensing technique has proved that it is possible to achieve a sampling rate lower than the Nyquist rate with acceptable reconstruction quality. The experimental results demonstrate that the proposed scheme can provide better PSNR and MOS with a similar compression ratio than the conventional DWT-based image compression schemes in a CS framework and other wavelet based texture synthesis schemes like HMT-3S.