<p>This work is the continuation of <sup>[<xref ref-type="bibr" rid="b11">11</xref>]</sup>, where a two-dimensional elliptic singularly perturbed weakly system, for which small parameters affected both the diffusion and the convection terms, was solved; moreover, all perturbation parameters could have different orders of magnitude, which is the most interesting and difficult case for this type of problem. It is well known that then, in general, overlapping regular or parabolic boundary layers appear in the solution of the continuous problem. To solve numerically the problem, the classical upwind finite difference scheme, defined on special piecewise uniform Shsihkin meshes, was used, proving its uniform convergence, with respect to all parameters, for four different ratios between them. In this paper, we complete the previous analysis, considering the two cases for these possible ratios, that were not considered in <sup>[<xref ref-type="bibr" rid="b11">11</xref>]</sup>. To see in practice the efficiency of the numerical method, we show the numerical results obtained with our algorithm for a test problem, when the cases analyzed in this work are fixed; from those results, the uniform convergence of the numerical algorithm follows, in agreement with the theoretical results.</p>