Proceedings of the Fourth Workshop on Computational Linguistics for Literature 2015
DOI: 10.3115/v1/w15-0712
|View full text |Cite
|
Sign up to set email alerts
|

A computational linguistic approach to Spanish Golden Age Sonnets: metrical and semantic aspects

Abstract: Several computational linguistics techniques are applied to analyze a large corpus of Spanish sonnets from the 16th and 17th centuries. The analysis is focused on metrical and semantic aspects. First, we are developing a hybrid scansion system in order to extract and analyze rhythmical or metrical patterns. The possible metrical patterns of each verse are extracted with language-based rules. Then statistical rules are used to resolve ambiguities. Second, we are applying distributional semantic models in order … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
4
0
2

Year Published

2016
2016
2023
2023

Publication Types

Select...
5
2
1

Relationship

0
8

Authors

Journals

citations
Cited by 11 publications
(6 citation statements)
references
References 16 publications
0
4
0
2
Order By: Relevance
“…Metaphor is of course used in many forms of poetry, and rule-based and statistical models have enabled the classification of metaphor in a corpus of English language poems (Kesarwani, Inkpen, Szpakowicz and Tanasecu (2017). Other models have enabled the detection of metaphor in expressionistic German poems (Reinig & Rehbein, 2019), identification of features that the predict period of origin, authorship, and goodness ratings (Jacobs & Kinder, 2017), and the differentiation of metaphor created by renowned poets and non-professional authors (Jacobs & Kinder, 2018). Additional examples of CL methods that have been used to study poetry include the detection of emotion in Punjabi poetry using Naive Bayesian and Support Vector Machine techniques (Saini & Kaur, 2020), stanza identification in Hindi poetry (Audichya & Saini, 2021), probabilistic topic modeling to study topic, meter, and authorship in Persian poems (Asgari & Chappelier, 2013), statistical and rule-based methods to determine the metrical and semantic aspects of 16th- and 17th-century Spanish Golden Age sonnets (Navarro-Colorado, 2015), and enjambment detection in a large diachronic corpus of Spanish sonnets (Ruiz, Canton, Poibeau & Gonzalez-Blanco, 2017).…”
Section: What Is Haiku?mentioning
confidence: 99%
“…Metaphor is of course used in many forms of poetry, and rule-based and statistical models have enabled the classification of metaphor in a corpus of English language poems (Kesarwani, Inkpen, Szpakowicz and Tanasecu (2017). Other models have enabled the detection of metaphor in expressionistic German poems (Reinig & Rehbein, 2019), identification of features that the predict period of origin, authorship, and goodness ratings (Jacobs & Kinder, 2017), and the differentiation of metaphor created by renowned poets and non-professional authors (Jacobs & Kinder, 2018). Additional examples of CL methods that have been used to study poetry include the detection of emotion in Punjabi poetry using Naive Bayesian and Support Vector Machine techniques (Saini & Kaur, 2020), stanza identification in Hindi poetry (Audichya & Saini, 2021), probabilistic topic modeling to study topic, meter, and authorship in Persian poems (Asgari & Chappelier, 2013), statistical and rule-based methods to determine the metrical and semantic aspects of 16th- and 17th-century Spanish Golden Age sonnets (Navarro-Colorado, 2015), and enjambment detection in a large diachronic corpus of Spanish sonnets (Ruiz, Canton, Poibeau & Gonzalez-Blanco, 2017).…”
Section: What Is Haiku?mentioning
confidence: 99%
“…A Scandroid program módosított, nagy adatmennyiségen lefuttatható változatát használja Chris Tanasescu, Bryan Paget és Diana Inkpen, akiknek a kutatása angol nyelvű versek ritmus és rím alapján történő automatikus osztályozására irányul. 4 Az úgyszintén angol nyelvű versek elemzésére fejlesztett ZuScansion nevű eszköz a Scandroidtól eltérően a jambikus és anapesztikus metrumok mellett egyéb metrumok 8 A korpuszban egy erre fejlesztett programmal automatikusan annotálják a verssorokban a hangsúlyos és hangsúlytalan szótagokat, a nem egyértelmű ritmusú, többféleképpen is annotálható verssorokat pedig manuálisan ellenőrzik. Érdemes megemlíteni a Cseh Tudományos Akadémia által fejlesztett Cseh verskorpuszt (Korpus českého verše) is, amely közel 80 000 annotált verset tartalmaz a 19. századból és a 20. század elejéről.…”
Section: Néhány Példa a Vershangzás Jellemzőinek Automatikus Elemzéséreunclassified
“…One approach takes a known meter and assigns syllables to stress patterns based on such parameters (Hartman, 1996). The second approach assumes nothing of the meter, and seeks to determine it by marking syllables and identifying patterns (Plamondon, 2006;McAleese, 2007;Greene et al, 2010;Agirrezabal et al, 2013;Navarro, 2015).…”
Section: Previous Computational Approaches To Metermentioning
confidence: 99%