This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
AbstractIn this work a new formulation for modelling the elastic-plastic behaviour of metallic strands subjected to axial-torsional loads is presented. Simple and accurate cross sectional constitutive equations are derived, fully accounting for the evolution of plastic deformations in the wires, starting from a description of the internal structure of the strand. The proposed approach is suitable both for straightforward analytical calculations as well as for implementation into finite elements for the large-scale structural analyses of cable structures. A full three-dimensional (3D) finite element (FE) model, based on a parametric description of the strand internal geometry, is also developed.