Abstract:In this paper, we present a conforming discontinuous Galerkin (CDG) finite element method for Brinkman equations. The velocity stabilizer is removed by employing the higher degree polynomials to compute the weak gradient. The theoretical analysis shows that the CDG method is actually stable and accurate for the Brinkman equations. Optimal order error estimates are established in H 1 and L 2 norm. Finally, numerical experiments verify the stability and accuracy of the CDG numerical scheme.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.