2019
DOI: 10.1007/978-3-030-28516-6_2
|View full text |Cite
|
Sign up to set email alerts
|

A Constitutive Model with a Historiotropic Yield Surface for Sands

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
23
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
4
1

Relationship

1
4

Authors

Journals

citations
Cited by 6 publications
(23 citation statements)
references
References 18 publications
0
23
0
Order By: Relevance
“…Its size in the effective stress space is described by the scalar state variable pB$p_B$, defining the isotropic part of the back stress tensor bold-italicσB${\bm \sigma }_B$ and the inclination of its bisector with the deviatoric structural tensor Ω defining the deviatoric part of bold-italicσB${\bm \sigma }_B$: σBbadbreak=pB()1+boldΩ.\begin{equation} {\bm \sigma }_B=p_B{\left(-\mathbf {1}+\bm{\Omega }\right)}. \end{equation}The proposed flow surface is similar to the one proposed in Grandas‐Tavera et al 50 . for sand and reads: F(bold-italicσ,bold-italicσB)badbreak=normalw:normalwgoodbreak−0true23Mw2[]1()normalpnormalpnormalBcBD1320trueΩ:ΩMΩ2G\begin{equation} F({\bm \sigma },{\bm \sigma }_B)=\rm w:\rm w-\dfrac{2}{3}M_{\rm w}^{2}\underbrace{{\left[1-{\left(\dfrac{p^{\prime }}{p_B}\right)}^{c_B}\right]}}_{D} \underbrace{{\left[1-\sqrt {\dfrac{3}{2}}\dfrac{\sqrt {\bm{\Omega }:\bm{\Omega }}}{M_{\bm{\Omega }}}\right]}^2}_{G} \end{equation}whereby w$\rm w$ is a deviatoric tensor capturing the position of the current stress with respect to the major axis of the flow surface: boldwbadbreak=bold-italicσ̂<...…”
Section: Historiotropic Flow Surfacementioning
confidence: 99%
See 4 more Smart Citations
“…Its size in the effective stress space is described by the scalar state variable pB$p_B$, defining the isotropic part of the back stress tensor bold-italicσB${\bm \sigma }_B$ and the inclination of its bisector with the deviatoric structural tensor Ω defining the deviatoric part of bold-italicσB${\bm \sigma }_B$: σBbadbreak=pB()1+boldΩ.\begin{equation} {\bm \sigma }_B=p_B{\left(-\mathbf {1}+\bm{\Omega }\right)}. \end{equation}The proposed flow surface is similar to the one proposed in Grandas‐Tavera et al 50 . for sand and reads: F(bold-italicσ,bold-italicσB)badbreak=normalw:normalwgoodbreak−0true23Mw2[]1()normalpnormalpnormalBcBD1320trueΩ:ΩMΩ2G\begin{equation} F({\bm \sigma },{\bm \sigma }_B)=\rm w:\rm w-\dfrac{2}{3}M_{\rm w}^{2}\underbrace{{\left[1-{\left(\dfrac{p^{\prime }}{p_B}\right)}^{c_B}\right]}}_{D} \underbrace{{\left[1-\sqrt {\dfrac{3}{2}}\dfrac{\sqrt {\bm{\Omega }:\bm{\Omega }}}{M_{\bm{\Omega }}}\right]}^2}_{G} \end{equation}whereby w$\rm w$ is a deviatoric tensor capturing the position of the current stress with respect to the major axis of the flow surface: boldwbadbreak=bold-italicσ̂<...…”
Section: Historiotropic Flow Surfacementioning
confidence: 99%
“…The adopted dilatancy description (Equations (47)–(49)) was established in Tafili et al 59 . according to extensive experimental evidence on fine‐grained soils 7,10,11,50 and the attentive reader is referred to these works for comprehensive details.…”
Section: Mechanical Model Formulationmentioning
confidence: 99%
See 3 more Smart Citations