We report the development of a
single-pass
electrochemical
Birch reduction carried out in a small footprint electrochemical Taylor
vortex reactor with projected productivities of >80 g day
–1
(based on 32.2 mmol h
–1
), using a modified version
of our previously reported reactor [
Org. Process Res. Dev.
2021
,
25
, 7, 1619–1627], consisting
of a static outer electrode and a rapidly rotating cylindrical inner
electrode. In this study, we used an aluminum tube as the sacrificial
outer electrode and stainless steel as the rotating inner electrode.
We have established the viability of using a sacrificial aluminum
anode for the electrochemical reduction of naphthalene, and by varying
the current, we can switch between high selectivity (>90%) for
either
the single ring reduction or double ring reduction with >80 g day
–1
projected productivity for either product. The concentration
of LiBr in solution changes the fluid dynamics of the reaction mixture
investigated by computational fluid dynamics, and this affects equilibration
time, monitored using Fourier transform infrared spectroscopy. We
show that the concentrations of electrolyte (LiBr) and proton source
(dimethylurea) can be reduced while maintaining high reaction efficiency.
We also report the reduction of 1-aminonaphthalene, which has been
used as a precursor to the API Ropinirole. We find that our methodology
produces the corresponding dihydronaphthalene with excellent selectivity
and 88% isolated yield in an uninterrupted run of >8 h with a projected
productivity of >100 g day
–1
.