The Conway‐Maxwell‐Poisson (COM‐Poisson) distribution is a two‐parameter generalization of the Poisson distribution, which can be used for overdispersed or underdispersed count data and also contains the geometric and Bernoulli distributions as special cases. This article presents a double exponentially weighted moving average control chart with steady‐state control limits to monitor COM‐Poisson attributes (regarded as CMP‐DEWMA chart). The performance of the proposed control chart has been evaluated in terms of the average, the median, and the standard deviation of the run‐length distribution. The CMP‐DEWMA control chart is studied not only to detect shifts in each parameter individually but also in both parameters simultaneously. The design parameters of the proposed chart are provided, and through a simulation study, it is shown that the CMP‐DEWMA chart is more effective than the EWMA chart at detecting downward shifts of the process mean. Finally, a real data set is presented to demonstrate the application of the proposed chart.