Scavenger receptors (SRs) are a large family of multifunctional receptors that are involved in a range of physiologic and pathologic processes. The ability of class A scavenger receptors (SR-As) to bind anionic ligands facilitates the internalization of negatively charged cell-penetrating peptide (CPP)-nucleic acid nanocomplexes and thus makes them attractive targets for delivery of various nucleic acids. Recently, we demonstrated that SR-A3 and SR-A5 are recruited from intracellular membranes to the plasma membrane after incubation with PepFect 14-splice-switching oligonucleotide complexes. Here, we examined the mechanisms responsible for translocation of SR-As to the cell surface. We demonstrate that, in addition to nanocomplexes, some amphipathic CPPs are able to induce externalization of SR-A3 and SR-A5, and this process requires the presence of calcium ions. Furthermore, translocation of SR-A3 and SR-A5 requires activity of phosphatidylinositol-3-kinase, intact actin cytoskeleton, and the presence of serum proteins in culture medium.-Juks, C., Lorents, A., Arukuusk, P., Langel, Ü., Pooga, M. Cell-penetrating peptides recruit type A scavenger receptors to the plasma membrane for cellular delivery of nucleic acids.