Among the icy satellites of Saturn, Iapetus shows a striking dichotomy
between its leading and trailing hemispheres, the former being significantly
darker than the latter. Thanks to the VIMS imaging spectrometer on-board
Cassini, it is now possible to investigate the spectral features of the
satellites in Saturn system within a wider spectral range and with an enhanced
accuracy than with previously available data. In this work, we present an
application of the G-mode method to the high resolution, visible and near
infrared data of Phoebe, Iapetus and Hyperion collected by Cassini/VIMS, to
search for compositional correlations. We also present the results of a
dynamical study on the efficiency of Iapetus in capturing dust grains
travelling inward in Saturn system to evaluate the viability of
Poynting-Robertson drag as the physical mechanism transferring the dark
material to the satellite. The results of spectroscopic classification are used
jointly with the ones of the dynamical study to describe a plausible physical
scenario for the origin of Iapetus' dichotomy. Our work shows that mass
transfer from the outer Saturnian system is an efficient mechanism,
particularly for the range of sizes hypothesised for the particles composing
the newly discovered outer ring around Saturn. Both spectral and dynamical data
indicate Phoebe as the main source of the dark material. However, we suggest a
multi-source scenario where now extinct prograde satellites and the disruptive
impacts that generated the putative collisional families played a significant
role in supplying the original amount of dark material.Comment: 20 pages, 4 tables, 11 figures, major revision (manuscript extended
and completed, figures added and corrected, new results added), minor
revision and finalization of author list, moderate revision (update of the
manuscript following reviewer's feedback and discovery of the new Saturnian
outer ring