Extensive studies of luminescent copper(I) complexes were conducted, revealing that some of them exhibit interesting chromic luminescence in response to external stimuli such as temperature, vapor, light, and mechanical force. In this review, recent progress in the field of luminescent chromic copper(I) complexes is discussed. Tetranuclear copper(I) clusters with a cubane-type {Cu 4 I 4 } core are the most prominent group, which shows thermochromic, vapochromic, and mechanochromic luminescence, and their responsiveness to external stimuli greatly depends on coordinating organic ligands. Coordination polymerization of copper(I) cluster cores using organic linkers provides new luminescent thermochromic and vapochromic materials with behavior strongly dependent on the flexibility of the framework. The diversity of the cluster core structure and the lability to the ligand exchange are also useful to derive unique behaviors of photochromic and vapochromic response. In addition to such stimuli-responsive luminescence, the mechanochemical synthesis of highly luminescent copper(I) complexes is introduced, since the phenomenon is closely related to the mechanochromic luminescence and this approach allows the preparation of an emission layer directly on the substrate.