The soot particle aerosol mass spectrometer (SP-AMS) instrument combines continuous wave laser vaporization with electron ionization aerosol mass spectrometry to characterize airborne, refractory black carbon (rBC) particles. The laser selectively vaporizes absorbing rBC-containing particles, allowing the SP-AMS to provide direct chemical information on the refractory and non-refractory chemical components, providing the potential to fingerprint various rBC particle types. In this study, SP-AMS mass spectra were measured for 12 types of rBC particles produced by industrial and combustion processes to explore differences in the carbon cluster (C n C ) mass spectra. The C n C mass spectra were classified into three categories based on their ion distributions, which varied with rBC particle type. The carbon ion distributions were investigated as a function of laser power, electron ionization (on/off), and ion charge (positive or negative). Results indicate that the dominant positive ion-formation mechanism is likely the vaporization of small, neutral carbon clusters followed by electron ionization (C 1 C to C 5 C ). Significant ion signal from larger carbon cluster ions (and their fragment ions in the small carbon cluster range), including mid carbon (C 6 C to C 29 C ) and fullerene (greater than C 30 C ) ions, were observed in soot produced under incomplete combustion conditions, including biomass burning, as well as in fullerene-enriched materials. Fullerene ions were also observed at high laser power with electron ionization turned off, formed via an additional ionization mechanism. We expect this SP-AMS technique to find application in the identification of the source and atmospheric history of airborne ambient rBC particles.