Background
Pulse oximetry was widely used in hospitals and at home to monitor blood oxygen during the COVID-19 pandemic. There have been concerns regarding potential bias in pulse oximetry measurements for people with dark skin. We aimed to assess the effects of skin pigmentation on the accuracy of oxygen saturation measurement by pulse oximetry (SpO2) compared with the gold standard SaO2 measured by CO-oximetry.
Methods
We searched Ovid MEDLINE, Ovid Embase, and EBSCO CINAHL Plus (up to December 2021), as well as ClinicalTrials.gov and World Health Organization International Clinical Trials Registry Platform (up to August 2021). We identified studies comparing SpO2 values in any population, in any care setting, using any type of pulse oximeter, with SaO2 by standard CO-oximetry; and measuring the impact of skin pigmentation or ethnicity on pulse oximetry accuracy. We performed meta-analyses for mean bias (the primary outcome in this review) and its standard deviations (SDs) across studies included for each subgroup of level of skin pigmentation and ethnicity. We calculated accuracy root-mean-square (Arms) and 95% limits of agreement based on pooled mean bias and pooled SDs for each subgroup.
Results
We included 32 studies (6505 participants); 27/32 (84.38%) in hospitals and none in people's homes. Findings of 14/32 studies (43.75%) were judged, via QUADAS-2, at high overall risk of bias. Fifteen studies measured skin pigmentation and 22 referred only to ethnicity. Compared with standard SaO2 measurement, pulse oximetry probably overestimates oxygen saturation in people with dark skin (pooled mean bias 1.11%; 95% confidence interval 0.29% to 1.93%) and people described as Black/African American (pooled mean bias 1.52%; 0.95% to 2.09%) (moderate- and low-certainty evidence). These results suggest that, for people with dark skin, pulse oximetry may overestimate blood oxygen saturation by around 1% on average compared with SaO2. The bias of pulse oximetry measurements for people with other levels of skin pigmentation, or those from the White/Caucasian group is more uncertain. The data do not suggest overestimation in people from other ethnic groups such as those described as Asian, Hispanic, or mixed ethnicity (pooled mean bias 0.31%, 0.09% to 0.54%), but this evidence is low certainty. Whilst the extent of mean bias is small or negligible for all the subgroups of population evaluated, the associated imprecision is unacceptably large (with the pooled SDs > 1%). Nevertheless, when the extents of measurement bias and precision are considered jointly in Arms, pulse oximetry measurements for all the subgroups appear acceptably accurate (with Arms < 4%).
Conclusions
Low-certainty evidence suggests that pulse oximetry may overestimate oxygen saturation in people with dark skin and people whose ethnicity is reported as Black/African American, compared with SaO2, although the overestimation may be quite small in hospital settings. The clinical importance of any overestimation will depend on the particular clinical circumstance. Pulse oximetry measurements appear accurate but imprecise for all levels of skin pigmentation. The evidence relates to clinician-measured oximetry in health care environments and may not be reflected in home pulse oximetry where other factors may also influence accuracy.