A heterocyclic Schiff base was prepared by condensing 3‐acetylcoumarin with 2‐amino‐3‐carboxyethyl‐4,5,6,7‐tetrahydrobenzo[b]thiophene. Such Schiff bases derived from two different heterocyclic moieties are rare and expected to have properties surpassing those of either of the parent compounds in effectiveness of complex formation and biological activities. This ligand formed a series of complexes with manganese(II), cobalt(II), nickel(II), copper(II), and zinc(II) ions. The ligand and the metal complexes were characterized by various physicochemical and spectral studies. These included elemental analysis, molar conductance, magnetic susceptibility, as well as UV–vis, IR, 1H NMR, 13C NMR, and ESR spectral studies. The ESR spectral data adequately supported the covalent nature of the metal–ligand bonds. The ligand possessed a hexagonal crystal structure, but on complexation the crystallinity was lost. The fluorescence spectra of the ligand and its metal complexes in DMSO were also recorded. The ligand and the metal complexes were screened for their antimicrobial activities, and it was observed that the metal complexes are more active than the ligand. The α‐amylase inhibitory activity and the DNA cleavage activity of the ligand and the metal complexes were also examined. in vitro antitumor activity of the copper(II) complex was assayed against human cervical carcinoma cells (HeLa cell line), showing that the complex exhibited promising antitumor activity on the HeLa cell line.