A Coupled Model for Forecasting Spatiotemporal Variability of Regional Drought in the Mu Us Sandy Land Using a Meta-Heuristic Algorithm
Changfu Tong,
Hongfei Hou,
Hexiang Zheng
et al.
Abstract:Vegetation plays a vital role in terrestrial ecosystems, and droughts driven by rising temperatures pose significant threats to vegetation health. This study investigates the evolution of vegetation drought from 2010 to 2024 and introduces a deep-learning-based forecasting model for analyzing regional spatial and temporal variations in drought. Extensive time-series remote-sensing data were utilized, and we integrated the Temperature–Vegetation Dryness Index (TVDI), Drought Severity Index (DSI), Evaporation St… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.