Fluorobenzoic acids are critically important chemical tracers in hydrothermal, geothermal, leaching, and oilfield applications. Particularly in oilfield applications, these tracers are used to investigate fluid flow paths between injector wells and producer wells, providing valuable information about the enhanced oil recovery process of the oil reservoirs. The detection limit of tracers is a vital subject in field reservoir work because the amount of chemical tracer that must be injected into the injector well is directly related to the amount detected at the producer well after migration and diffusion. The popularity of fluorinated benzoic acids as the tracers is due to their non-toxicity over radioactive tracers and low detection limit, which is determined using analytical techniques. This review focuses on the improvements/developments in extraction techniques such as solid-phase extraction and determination techniques such as gas chromatography coupled with mass spectrometry, liquid chromatography with mass spectrometry, isotope dilution gas chromatography-mass spectrometry, high-performance liquid chromatography, ion chromatography coupled with electrospray mass spectrometry, and so on for the analysis of fluorinated benzoic acids to achieve the lowest possible limit of concentration.