Adult hippocampal neurogenesis (AHN) is a key process for certain types of hippocampal-dependent learning. Alzheimer's disease (AD) is accompanied by memory deficits related to alterations in AHN. Given that the increased activity of GSK-3β has been related to alterations in the population of hippocampal granule neurons in AD patients, we designed a novel methodology by which to induce selective GSK-3β overexpression exclusively in newborn granule neurons. To this end, we injected an rtTA-IRES-EGFP-expressing retrovirus into the hippocampus of tTO-GSK-3β mice. Using this novel retroviral strategy, we found that GSK-3β caused a cell-autonomous impairment of the morphological and synaptic maturation of newborn neurons. In addition, we examined whether GSK-3β overexpression in newborn neurons limits the effects of physical activity. While physical exercise increased the number of dendritic spines, the percentage of mushroom spines, and the head diameter of the same in tet-OFF cells, these effects were not triggered in tet-ON cells. This observation suggests that GSK-3β blocks the stimulatory actions of exercise. Given that the activity of GSK-3β is increased in the brains of individuals with AD, these data may be relevant for non-pharmacological therapies for AD.