MFC is a promising technology that can be used for simultaneous electricity generation and wastewater treatment. Power energy generation of a ferroelectric cathodic ceramic, Li0.95Ta0.76Nb0.19Mg0.15O3 (LTNMg), has been measured in microbial fuel cells, integrating a single chamber fed by industrial wastewater (CODinitial = 471 mg L−1, and pHinitial = 7.24 at T = 27 °C). In this process, the mixed multicomponent oxide material has been prepared and characterized by XRD, PSD, TEM, and UV-Vis spectroscopy. The catalytic activity has been investigated by COD determination, analysis of heavy metals, and polarization measurement. The results show a high COD reduction efficiency, which reaches 95.70% after a working time of 168 h with a maximal power density of 228 mW m−2. In addition, the maximum value of generated voltage in the open-circuit potential (OCP) of this MFC configuration has been increased from 340 mV in the absence of a light source to 470 mV under irradiation, indicating the presence of a promoting photocatalytic effect of LTNMg, which improved the process of the cathodic electron transfer inside the MFC device.