Regulatory T cells (Tregs) must express appropriate skin-homing adhesion molecules to exert suppressive effects on dermal inflammation. However, the mechanisms whereby they control local inflammation remain unclear. In this study we used confocal intravital microscopy in wild-type and Foxp3-GFP mice to examine adhesion of effector T cells and Tregs in dermal venules. These experiments examined a two-challenge model of contact sensitivity (CS) in which Treg abundance in the skin progressively increases during the course of the response. Adhesion of CD4+ T cells increased during CS, peaking 8–24 h after an initial hapten challenge, and within 4 h of a second challenge. At these time points, 40% of adherent CD4+ T cells were Foxp3+ Tregs. CD4+ T cell adhesion was highly dependent on ICAM-1, and consistent with this finding, anti–ICAM-1 prevented Treg adhesion. Skin TGF-β levels were elevated in skin during both challenges, in parallel with Treg adhesion. In the two-challenge CS model, inhibition of ICAM-1 eliminated Treg adhesion, an effect associated with a significant increase in neutrophil adhesion. Similarly, total CD4+ T cell depletion caused an increase in adhesion of CD8+ T cells. Because Treg adhesion was restricted by both of these treatments, these experiments suggest that adherent Tregs can control adhesion of proinflammatory leukocytes in vivo. Moreover, the critical role of ICAM-1 in Treg adhesion provides a potential explanation for the exacerbation of inflammation reported in some studies of ICAM-1–deficient mice.