Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The automated evaluation of pain is critical for developing effective pain management approaches that seek to alleviate while preserving patients’ functioning. Transformer-based models can aid in detecting pain from Hindi text data gathered from social media by leveraging their ability to capture complex language patterns and contextual information. By understanding the nuances and context of Hindi text, transformer models can effectively identify linguistic cues, sentiment and expressions associated with pain enabling the detection and analysis of pain-related content present in social media posts. The purpose of this research is to analyse the feasibility of utilizing NLP techniques to automatically identify pain within Hindi textual data, providing a valuable tool for pain assessment in Hindi-speaking populations. The research showcases the HindiPainNet model, a deep neural network that employs the IndicBERT model, classifying the dataset into two class labels {pain, no_pain} for detecting pain in Hindi textual data. The model is trained and tested using a novel dataset, दर्द-ए-शायरी (pronounced as Dard-e-Shayari ) curated using posts from social media platforms. The results demonstrate the model's effectiveness, achieving an accuracy of 70.5%. This pioneer research highlights the potential of utilizing textual data from diverse sources to identify and understand pain experiences based on psychosocial factors. This research could pave the path for the development of automated pain assessment tools that help medical professionals comprehend and treat pain in Hindi speaking populations. Additionally, it opens avenues to conduct further NLP-based multilingual pain detection research, addressing the needs of diverse language communities.
The automated evaluation of pain is critical for developing effective pain management approaches that seek to alleviate while preserving patients’ functioning. Transformer-based models can aid in detecting pain from Hindi text data gathered from social media by leveraging their ability to capture complex language patterns and contextual information. By understanding the nuances and context of Hindi text, transformer models can effectively identify linguistic cues, sentiment and expressions associated with pain enabling the detection and analysis of pain-related content present in social media posts. The purpose of this research is to analyse the feasibility of utilizing NLP techniques to automatically identify pain within Hindi textual data, providing a valuable tool for pain assessment in Hindi-speaking populations. The research showcases the HindiPainNet model, a deep neural network that employs the IndicBERT model, classifying the dataset into two class labels {pain, no_pain} for detecting pain in Hindi textual data. The model is trained and tested using a novel dataset, दर्द-ए-शायरी (pronounced as Dard-e-Shayari ) curated using posts from social media platforms. The results demonstrate the model's effectiveness, achieving an accuracy of 70.5%. This pioneer research highlights the potential of utilizing textual data from diverse sources to identify and understand pain experiences based on psychosocial factors. This research could pave the path for the development of automated pain assessment tools that help medical professionals comprehend and treat pain in Hindi speaking populations. Additionally, it opens avenues to conduct further NLP-based multilingual pain detection research, addressing the needs of diverse language communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.