SummaryThrough the combined study of model organisms, cell biology, cell signaling and medical genetics we have significantly increased our understanding of the structure and functions of the vertebrate cilium. This ancient organelle has now emerged as a crucial component of certain signaling and sensory perception pathways in both developmental and homeostatic contexts. Here, we provide a snapshot of the structure, function and distribution of the vertebrate cilium and of the pathologies that are associated with its dysfunction.
Key words: Cilia, IFT, Signaling
IntroductionOnce considered to be vestigial organelles, cilia are microtubulebased structures found in unicellular flagellates and in multicellular organisms and have recently been discovered to have a profound influence on tissue development and homeostasis. Although the presence of cilia is restricted to specific cell types in invertebrates, their near ubiquitous localization on the apical surface of most vertebrate cell types suggests that this ancient organelle has evolved to facilitate a broad range of functions. Recent findings in humans and in model organisms have fuelled a renewed interest in the cilium as a sensory hub and as generator of fluid flow; both of these functions underpin fascinating developmental processes, such as the initiation of left-right (L-R) asymmetry (Hirokawa et al., 2006), as well as certain disease pathologies, such as the modulation of cancer progression and metastasis (Han et al., 2009;Wong et al., 2009). Consistent with the developmental roles of the cilium in vertebrates in fluid flow generation, mechanosensation, osmosensation, olfaction, photoreception, chemosensation and thermosensation (Berbari et al., 2009; Hirokawa et al., 2006), and based on the diverse range of cell types that can form a cilium, the clinical features of several human disorders have been attributed to dysfunctional cilia. In this poster article, we provide an overview of ciliary biology with an emphasis on signaling pathways and modes of ciliary dysfunction in which selected ciliary expression is associated with specific developmental events and disease states. Development 139, 443-448 (2012) (Gerdes et al., 2009;Olsen, 2005), cilia are microtubule-based structures that can be classified as immotile 9+0 primary cilia or motile 9+2 cilia, depending on the presence of a central microtubule pair that is surrounded by nine pairs of microtubule doublets (Satir and Christensen, 2007). However, exceptions to these traditional classifications do occur; renal cilia have a motile 9+0 configuration (Kramer-Zucker et al., 2005), motile cilia of the mouse embryonic node have both 9+0 and 9+2 configurations (Caspary et al., 2007;Nonaka et al., 1998), and cilia in the frog appear to have an immotile 9+2 design (Reese, 1965). Although the number of motile cilia can range from 200 to 300 per cell type, a single immotile primary cilium is typically present on most cell types.Pioneering studies in the green alga Chlamydomonas reinhardtii delineated a dynamic...