Advanced oxidation processes (AOPs) based on peroxymonosulfate (PMS) activation have been developed as an ideal pathway for completely eradication of recalcitrant organic pollutants from water environment. Herein, the V-doped graphitic carbon nitride (g-C3N4) is rationally fabricated by one-step thermal polymerization method to activate PMS for contamination decontamination. The results demonstrate the V atoms are successfully integrated into the framework of g-C3N4, which can effectively improve light absorption intensity and enhance charge separation. The V-doped g-C3N4 displays superior catalytic performance for PMS activation. Moreover, the doping content has a great influence on the activation performances. The radical quenching experiments confirm •O2−, SO4•−, and h+ are the significant species in the catalytic reaction. This work would provide a feasible strategy to exploit efficient g-C3N4-based material for PMS activation.