This Review summarizes recent advancements in regulating microenvironments for enhancing CO 2 conversion, particularly focusing on copper-based catalysts, which are crucial for transforming CO 2 to valuable chemicals and fuels. We discuss strategies for microenvironment regulation, including single-atom catalyst design, particle size/facets/morphology control, confinement effects, and interfacial engineering. These approaches influence the efficiency and selectivity of CO 2 conversion by optimizing active site density, controlling reactant/intermediate concentrations, and promoting charge-transfer processes. We highlight the importance of enhancing mass transfer, optimizing electrolyte properties, and modifying electrode structures in improving the CO 2 conversion. Despite significant progress, challenges remain in electrocatalytically achieving high current densities for multicarbon products, and developing effective strategies to quantify the contribution of the microenvironment to catalytic performance. Future research will focus on developing advanced characterization techniques, exploring novel materials and synthesis methods, utilizing machine learning and theoretical modeling for catalyst design and optimization.