In this study, essential oils (EO)-incorporated multi-walled carbon nanotubes (MWCNTs) filters were developed for achieving dual functions in effective removing bacteria from aqueous solutions and inactivating bacteria cells captured on the filters. Tea tree essential oil (TTO), lemon essential oil (LEO), and TTO-LEO-mixture were coated on MWCNTs filters with different MWCNTs loadings ranging from 3 mg to 6 mg. MWCNTs filters with 6.0 mg MWCNTs showed complete removal (100%) of E. coli cells from PBS buffer with 6.35 log10 decrease of cell numbers. TTO, LEO, and TTO/LEO Mix (1:1) coatings at the volume of 50 μL on MWCNTs filters achieved bacterial removal rates of >98%, and highly effective inactivation efficiency. TTO coatings had the highest antimicrobial efficacies than LEO and Mix coatings, MWCNTs filters with 50 μL TTO coating showed 100% inhibitory rate of the captured bacteria on the filter surfaces. Those captured but survived cells on filters with less TTO coating (20μL) significantly reduced their salt tolerances to 30 and 40 g/L NaCl in LB agar, and became less salt tolerance with longer incubation time on the filters. The developed TTO-MWCNTs filters had much higher antimicrobial efficacies than the filters with dual functions developed previously.