OsCYP2-P is an active cyclophilin (having peptidyl-prolyl cis/trans-isomerase activity, PPIase) isolated from the wild rice Pokkali having a natural capacity to grow and yield seeds in coastal saline regions of India. Transcript abundance analysis in rice seedlings showed the gene is inducible by multiple stresses, including salinity, drought, high temperature, and heavy metals. To dissect the role of OsCYP2-P gene in stress response, we raised overexpression (OE) and knockdown (KD) transgenic rice plants with >2-3 folds higher and approximately 2-fold lower PPIase activity, respectively. Plants overexpressing this gene had more favorable physiological and biochemical parameters (K + /Na + ratio, electrolytic leakage, membrane damage, antioxidant enzymes) than wild type, and the reverse was observed in plants that were knocked down for this gene.We propose that OsCYP2-P contributes to stress tolerance via maintenance of ion homeostasis and thus prevents toxic cellular ion buildup and membrane damage. OE plants were found to have a higher harvest index and higher number of filled grains under salinity and drought stress than wild type. OsCYP2-P interacts with calmodulin, indicating it functions via the Ca-CaM pathway. Compared to the WT, the germinating OE seeds exhibited a substantially higher auxin level, and this hormone was below the detection limits in the WT and KD lines. These observations strongly indicate that OsCyp2-P affects the signaling and transport of auxin in rice.
| INTRODUCTIONExposure to abiotic stresses such as salinity and drought affects growth, development, and, subsequently, the yield of crop plants