2015
DOI: 10.3917/fina.361.0007
|View full text |Cite
|
Sign up to set email alerts
|

A DARE for VaR

Abstract: Cet article introduit une nouvelle classe de modèles pour la Value-at-Risk ( VaR ) et l’ Expected Shortfall ( ES ), appelés modèles Dynamic AutoRegressive Expectiles ( DARE ). Notre approche est fondée sur une moyenne pondérée de modèles de VaR et d’ ES , calculés à partir des expectiles, i.e . les modèles Conditional Autoregressive Expectile ( CARE ) introduits par Taylor (2008a) et Kuan et al . (2009). Premièrement, nous recensons brièvement les principales approches non paramétriques, paramétriques et semi … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
4
0
1

Year Published

2018
2018
2022
2022

Publication Types

Select...
7

Relationship

1
6

Authors

Journals

citations
Cited by 8 publications
(5 citation statements)
references
References 40 publications
0
4
0
1
Order By: Relevance
“…Gerlach and Chen (2014) and Meng and Taylor (2020) generalized the approach of dynamic quantile models with the incorporation of intraday information in conditional expectile models, estimated using a Bayesian method. Hamidi et al (2015) also built on this approach through the use of a combination of Dynamic Auto-Regressive Expectiles (DARE) models, which is analogous to the Dynamic Auto-Regressive Quantile (DAQ) modelling approach of Gouriéroux and Jasiak (2008). Kim and Lee (2016) investigated some of the theoretical and empirical properties of VaR and ES estimations based on Taylor's (2008) proposal and a broad class of non-linear conditional expectile models, whilst Patton et al (2019) and Taylor (2019) proposed various dynamic semi-parametric models for VaR and ES.…”
Section: Introductionmentioning
confidence: 99%
“…Gerlach and Chen (2014) and Meng and Taylor (2020) generalized the approach of dynamic quantile models with the incorporation of intraday information in conditional expectile models, estimated using a Bayesian method. Hamidi et al (2015) also built on this approach through the use of a combination of Dynamic Auto-Regressive Expectiles (DARE) models, which is analogous to the Dynamic Auto-Regressive Quantile (DAQ) modelling approach of Gouriéroux and Jasiak (2008). Kim and Lee (2016) investigated some of the theoretical and empirical properties of VaR and ES estimations based on Taylor's (2008) proposal and a broad class of non-linear conditional expectile models, whilst Patton et al (2019) and Taylor (2019) proposed various dynamic semi-parametric models for VaR and ES.…”
Section: Introductionmentioning
confidence: 99%
“…The remainder is invested in the risk-free asset. If rebalancing were continuous and price movements sufficiently smooth, the CPPI allocation rule would ensure that the portfolio does not fall below the floor (Ardia, Boudt, & Wauters, 2016;Balder et al, 2009;Cont & Tankov, 2009;Hamidi, Hurlin, Kouontchou, & Maillet, 2015). However, with discrete rebalancing and jumps in prices, there is a non-negligible probability that the floor is breached.…”
Section: Constant and Dynamic Proportion Portfolio Insurancementioning
confidence: 99%
“…Vannak teljesen alternatív módszerek a kockázat kiszámítására is, amelyek nem is veszik figyelembe a kvartilisokat mint a legmegfelelőbb kockázatbecslési paramétert (Hamidi et al, 2015). Ebben a cikkben nem foglalkozunk ezekkel a metódusokkal és ezzel a kérdéssel.…”
Section: A Var Számításának Módszereiunclassified