“…Intensity changes in an MBN signal with material state transformation are usually reflected and described by the representative parameters calculated in time-frequency (TF) domain such as the amplitude, energy, root mean square (RMS), waveform full width at half maximum (FWHM), envelope, peak time, threshold, and power spectrum [ 3 , 4 , 5 , 8 , 9 , 10 ]. However, affected by the microscopic magnetic anisotropy of the material itself, measurement performance, and experimental magnetization parameters (such as magnetization intensity and frequency, excitation waveform), the MBN has an obvious stochastic nature and the application of more automatic signals processing procedures used for extraction, selection, and fusion of signal features containing critical and distinctive information about the material properties are urgently required.…”