Abstract:A typical chemical alarm database is characterized by a large search space with skewed frequency distribution. Thus in practice, discovery of alarm patterns and interesting associations from such data can be exceptionally difficult and costly. To overcome this problem we propose a data-driven approach to optimally derive the pruning thresholds which are relevant to the temporal data context of the particular tag of interest
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.