This work introduces a novel data‐driven model‐free modified nodal analysis (MNA) circuit solver. The solver is capable of handling circuit problems featuring elements for which solely measurement data are available. Rather than utilizing hard‐coded phenomenological model representations, the data‐driven MNA solver reformulates the circuit problem such that the solution is found by minimizing the distance between circuit states that fulfill Kirchhoff's laws, and states belonging to the measurement data. In this way, the formerly inevitable demand for model representations is eliminated, thus avoiding the introduction of related modeling errors and uncertainties. The proposed solver is applied to linear and nonlinear RC‐circuits and to a half‐wave rectifier.