2023
DOI: 10.1177/09544054231157153
|View full text |Cite
|
Sign up to set email alerts
|

A data-driven ensemble algorithm of black widow optimizer and simulated annealing algorithms for multi-objective buffer allocation in production lines

Abstract: The multi-objective buffer allocation problem of production lines is a non-deterministic-polynomial-hard problem. Many metaheuristic algorithms have been proposed to solve this problem. However, further investigation of new algorithms is still required because metaheuristic algorithms highly depend on the problem types. Furthermore, the balance between the solution quality and computational efficiency requires further improvement. Therefore, a data-driven algorithm consisting of the black widow optimizer and s… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 30 publications
0
1
0
Order By: Relevance
“…The most common optimization criteria consider maximizing the average throughput rate (Gao, 2022;Gao, Higashi, Kobayashi, Taneda, Rubrico & Ota, 2020;Gao & Liu, 2023;Kassoul, Cheikhrouhou & Zufferey, 2023;Köse, Demir, Tunal & Eliiyi, 2015;Kose & Kilincci, 2015;Koyuncuoğlu & Demir, 2021;Lin & Chiu, 2018;Nahas, Nourelfath & Gendreau, 2014;Narasimhamu, Reddy & Rao, 2014;Patchong & Kerbache, 2017;Wang, Song, Shin & Moon, 2014), minimizing the total buffer size (Li, 2013;Weiss & Stolletz, 2015), minimizing the total cost of allocation (Magnanini, Terkaj & Tolio, 2022;Nahas, 2017;Nahas & Nourelfath, 2018;Ouzineb, Mhada, Pellerin & El Hallaoui, 2018;Tiacci, 2022), among others (Alfieri, Matta & Pastore, 2020;Hernández-Vázquez, Hernández-González, Jiménez-García, Hernández-Ripalda & Hernández-Vázquez, 2019;Hernández-Vázquez, Hernández-González, Hernández-Vázquez, Figueroa-Fernández & Cancino de la Fuente, 2022b;Koyuncuoğlu & Demir, 2023;Shaaban & Romero-Silva, 2021;Shao, Moroni, Li, & Xu, 2022;Xi, Smith, Chen, Mao, Zhang & Yu, 2021;Zhou, Liu, Yu & Tao, 2018).…”
Section: Buffer Allocation Problemmentioning
confidence: 99%
“…The most common optimization criteria consider maximizing the average throughput rate (Gao, 2022;Gao, Higashi, Kobayashi, Taneda, Rubrico & Ota, 2020;Gao & Liu, 2023;Kassoul, Cheikhrouhou & Zufferey, 2023;Köse, Demir, Tunal & Eliiyi, 2015;Kose & Kilincci, 2015;Koyuncuoğlu & Demir, 2021;Lin & Chiu, 2018;Nahas, Nourelfath & Gendreau, 2014;Narasimhamu, Reddy & Rao, 2014;Patchong & Kerbache, 2017;Wang, Song, Shin & Moon, 2014), minimizing the total buffer size (Li, 2013;Weiss & Stolletz, 2015), minimizing the total cost of allocation (Magnanini, Terkaj & Tolio, 2022;Nahas, 2017;Nahas & Nourelfath, 2018;Ouzineb, Mhada, Pellerin & El Hallaoui, 2018;Tiacci, 2022), among others (Alfieri, Matta & Pastore, 2020;Hernández-Vázquez, Hernández-González, Jiménez-García, Hernández-Ripalda & Hernández-Vázquez, 2019;Hernández-Vázquez, Hernández-González, Hernández-Vázquez, Figueroa-Fernández & Cancino de la Fuente, 2022b;Koyuncuoğlu & Demir, 2023;Shaaban & Romero-Silva, 2021;Shao, Moroni, Li, & Xu, 2022;Xi, Smith, Chen, Mao, Zhang & Yu, 2021;Zhou, Liu, Yu & Tao, 2018).…”
Section: Buffer Allocation Problemmentioning
confidence: 99%