Aiming at the high-dimensional uncertainties of restoration process, an optimization model for distribution system restoration control is proposed considering expected restoration benefits, expected restoration costs, and security risks of the overall restoration scheme. In the proposed model, the effect of security control on restoration process is actively analyzed considering the security control costs of preventive, emergency, and correction controls. A two-layer decision support framework for distribution system restoration decision support system (DRDSS) is also designed. The upper layer of the proposed framework generates the pre-adjustment schemes of operation mode for energized power grid by load transfer and selects the optimal pre-adjustment scheme and the corresponding partitioning scheme based on the partition adjustment results of each pre-adjustment scheme. In addition, it optimizes the spatial-temporal decision-making of the inter-partition connectivity. For each partition, the lower layer of the proposed framework pre-selects the units and loads to be restored according to the pre-evaluated restoration income, generates the table of alternative restoration scheme for coping with uncertain events through simulation and deduction, and evaluates the risk and benefit of each scheme. For the uncertain events in the actual restoration process, the current restoration scheme can be adaptively switched to a sub-optimal scheme or re-optimized if necessary. Meanwhile, the proposed framework provides an information interaction interface for collaborative restoration with the related transmission system. A 123-node test system is built to evaluate the effectiveness and adaptability of the proposed model and framework.