Social networks contain a large amount of unstructured data. To ensure the stability of unstructured big data, this study proposes a method for visual dynamic simulation model of unstructured data in social networks. This study uses the Hadoop platform and data visualization technology to establish a univariate linear regression model according to the time correlation between data, estimates and approximates perceptual data, and collects unstructured data of social networks. Then, the unstructured data collected from the original social network are processed, and an adaptive threshold is designed to filter out the influence of noise. The unstructured data of social network after feature analysis are processed to extract its visual features. Finally, this study carries out the Hadoop cluster design, implements data persistence by HDFS, uses MapReduce to extract data clusters for distributed computing, builds a visual dynamic simulation model of unstructured data in social network, and realizes the display of unstructured data in social network. The experimental results show that this method has a good visualization effect on unstructured data in social networks and can effectively improve the stability and efficiency of unstructured data visualization in social networks.