Many problems of interest for cyber-physical network systems can be formulated as Mixed-Integer Linear Programs in which the constraints are distributed among the agents. In this paper we propose a distributed algorithmic framework to solve this class of optimization problems in a peer-to-peer network with no coordinator and with limited computation and communication capabilities. At each communication round, agents locally solve a small linear program, generate suitable cutting planes and communicate a fixed number of active constraints. Within the distributed framework, we first propose an algorithm that, under the assumption of integer-valued optimal cost, guarantees finite-time convergence to an optimal solution. Second, we propose an algorithm for general problems that provides a suboptimal solution up to a given tolerance in a finite number of communication rounds. Both algorithms work under asynchronous, directed, unreliable networks. Finally, through numerical computations, we analyze the algorithm scalability in terms of the network size. Moreover, for a multi-agent multi-task assignment problem, we show, consistently with the theory, its robustness to packet loss. 1 A. Testa and A. Rucco are with the An early short version of this work appeared as [1]: the current article includes a much improved comprehensive treatment, an extended algorithm for general mixed-integer linear programs, new numerical computations, and an application to the multi-agent multi-task assignment problem.