2017
DOI: 10.1177/1548512916683841
|View full text |Cite
|
Sign up to set email alerts
|

A decision tree framework for understanding blast-induced mild Traumatic Brain Injury in a military medical database

Abstract: Personalized medicine is a ubiquitous term that has come to be used to describe a medical model that proposes the customization of healthcare, such that decisions and/or treatments are tailored to each individual patient. Under this type of clinical practice model, diagnostic and prognostic decisions are often based upon selecting the most appropriate therapy based on a patient’s genetic, demographic, and/or other pertinent information. The primary aim of this paper is to use a personalized medicine framework … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2019
2019
2023
2023

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 23 publications
0
1
0
Order By: Relevance
“…Decision trees [38], support vector machine, neural networks [39], uncertainty index [40] and hybrid intelligent systems consisting of fuzzy logic and genetic algorithms [41] have been employed as classification approaches for data fusion in medicine. Decision tree classifiers were used to build a classification model in the form of a tree from the patient biomarker data [42]. The classifier provides a score for the data by testing each attribute and sorting and classifying particular instances in the data [43].…”
Section: Introductionmentioning
confidence: 99%
“…Decision trees [38], support vector machine, neural networks [39], uncertainty index [40] and hybrid intelligent systems consisting of fuzzy logic and genetic algorithms [41] have been employed as classification approaches for data fusion in medicine. Decision tree classifiers were used to build a classification model in the form of a tree from the patient biomarker data [42]. The classifier provides a score for the data by testing each attribute and sorting and classifying particular instances in the data [43].…”
Section: Introductionmentioning
confidence: 99%