2021
DOI: 10.48550/arxiv.2104.08996
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

A decoupled, stable, and linear FEM for a phase-field model of variable density two-phase incompressible surface flow

Abstract: The paper considers a thermodynamically consistent phase-field model of a two-phase flow of incompressible viscous fluids. The model allows for a non-linear dependence of fluid density on the phase-field order parameter. Driven by applications in biomembrane studies, the model is written for tangential flows of fluids constrained to a surface and consists of (surface) Navier-Stokes-Cahn-Hilliard type equations. We apply an unfitted finite element method to discretize the system and introduce a fully discrete t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 46 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?