Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In this article, we propose and analyze a new decoupled characteristic stabilized finite element method for the time‐dependent Navier–Stokes/Darcy model. The key idea lies in combining the characteristic method with the stabilized finite element method to solve the decoupled model by using the lowest‐order conforming finite element space. In this method, the original model is divided into two parts: one is the nonstationary Navier–Stokes equation, and the other one is the Darcy equation. To deal with the difficulty caused by the trilinear term with nonzero boundary condition, we use the characteristic method. Furthermore, as the lowest‐order finite element pair do not satisfy LBB (Ladyzhen‐Skaya‐Brezzi‐Babuska) condition, we adopt the stabilized technique to overcome this flaw. The stability of the numerical method is first proved, and the optimal error estimates are established. Finally, extensive numerical results are provided to justify the theoretical analysis.
In this paper, we construct a modular grad-div stabilization method for the Navier-Stokes/Darcy model, which is based on the first order Backward Euler scheme. This method does not enlarge the accuracy of numerical solution, but also can improve mass conservation and relax the influence of parameters. Herein, we give stability analysis and error estimations. Finally, by some numerical experiment, the scheme our proposed is shown to be valid.
The coupling between free and porous medium flows has received significant attention since it plays an important role in a wide range of problems from fluid‐soil interactions to biofluid dynamics. However, modeling this coupled process remains a difficult task as it often involves a domain decomposition algorithm in conjunction with a special treatment at the interface. The problem can become more challenging under non‐isothermal conditions because it requires the iterative procedure at every time step to simultaneously meet the transient mass continuity, force equilibrium, and energy balance for the entire system. This article presents a diffuse interface framework for modeling non‐isothermal Stokes‐Darcy flow and the corresponding finite element formulation that bypasses the need for explicitly splitting the domain into two, which enables the unified treatment for distinct regions with different hydrothermal flow regimes. To achieve this goal, we employ the Allen‐Cahn type phase field model to generate the diffuse geometry, where the solution field can be seen as a regularized approximation of the Heaviside indicator function, allowing us to transfer the interface conditions into a set of immersed boundary conditions. Our formulation suggests that the isothermal operator splitting strategy can be adopted without compromising accuracy if the heat and mass transfer processes are decoupled by assuming that the density and viscosity of the phase constituents are independent to the temperature. Numerical examples are also introduced to verify the implementation and to demonstrate the model capacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
BlogTerms and ConditionsAPI TermsPrivacy PolicyContactCookie PreferencesDo Not Sell or Share My Personal Information
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.