2023
DOI: 10.1111/exsy.13371
|View full text |Cite
|
Sign up to set email alerts
|

A deep learning approach for the depression detection of social media data with hybrid feature selection and attention mechanism

Abstract: Depression is a severe mental health issue. The user-generated content on social media (SM) is growing nowadays. Some computational approaches have been proposed for detecting depression based on users' SM data. However, because of the use of formal language, short range of words and misspellings in the SM data, depression detection (DD) is a challenging task. This paper proposes a novel deep learning (DL) technique for performing DD of the SM data with the help of the hybrid feature selection (FS) mechanism. … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 27 publications
0
0
0
Order By: Relevance