2021
DOI: 10.1101/2021.04.23.441035
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

A deep learning approach to neurite prediction in high throughput fluorescence imaging

Abstract: Changes to neuronal morphology and loss of neurites and synaptic connections can be an important early indicator of neurological diseases, and a pathognomonic sign of neurodevelopmental disorders. These changes are typically detectable by microscopy in cell culture or histological samples, but quantification can be challenging. The neurites extending from cell soma can be quite thin, dim, overlapping and complex, making them laborious to trace manually and difficult to annotate and quantify computationally or … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 57 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?