In the smart grid paradigm, precise electrical load forecasting (ELF) offers significant advantages for enhancing grid reliability and informing energy planning decisions. Specifically, mid-term ELF is a key priority for power system planning and operation. Although statistical methods were primarily used because ELF is a time series problem, deep learning (DL)-based forecasting approaches are more commonly employed and successful in achieving precise predictions. However, these DL-based techniques, known as black box models, lack interpretability. When interpreting the DL model, employing explainable artificial intelligence (XAI) yields significant advantages by extracting meaningful information from the DL model outputs and the causal relationships among various factors. On the contrary, precise load forecasting necessitates employing feature engineering to identify pertinent input features and determine optimal time lags. This research study strives to accomplish a mid-term forecast of ELF study load utilizing aggregated electrical load consumption data, while considering the aforementioned critical aspects. A hybrid framework for feature selection and extraction is proposed for electric load forecasting. Technical term abbreviations are explained upon first use. The feature selection phase employs a combination of filter, Pearson correlation (PC), embedded random forest regressor (RFR) and decision tree regressor (DTR) methods to determine the correlation and significance of each feature. In the feature extraction phase, we utilized a wrapper-based technique called recursive feature elimination cross-validation (RFECV) to eliminate redundant features. Multi-step-ahead time series forecasting is conducted utilizing three distinct long-short term memory (LSTM) models: basic LSTM, bi-directional LSTM (Bi-LSTM) and attention-based LSTM models to accurately predict electrical load consumption thirty days in advance. Through numerous studies, a reduction in forecasting errors of nearly 50% has been attained. Additionally, the local interpretable model-agnostic explanations (LIME) methodology, which is an explainable artificial intelligence (XAI) technique, is utilized for explaining the mid-term ELF model. As far as the authors are aware, XAI has not yet been implemented in mid-term aggregated energy forecasting studies utilizing the ELF method. Quantitative and detailed evaluations have been conducted, with the experimental results indicating that this comprehensive approach is entirely successful in forecasting multivariate mid-term loads.