Neural network has shown promising performance on coreference resolution systems that uses mention pair method. With deep neural network, it can learn hidden and deep relations between two mentions. However, there is no work on coreference resolution for Indonesian text that uses this learning technique. The state-of-the-art system for Indonesian text only states the use of lexical and syntactic features can improve the existing coreference resolution system. In this paper, we propose a new coreference resolution system for Indonesian text with mention pair method that uses deep neural network to learn the relations of the two mentions. In addition to lexical and syntactic features, in order to learn the representation of the mentions' words and context, we use word embeddings and feed them to Convolutional Neural Network (CNN). Furthermore, we do singleton exclusion using singleton classifier component to prevent singleton mentions enter any entity clusters at the end. Achieving 67.37% without singleton exclusion, 63.27% with trained singleton classifier, and 75.95% with gold singleton classifier on CoNLL average F1 score, our proposed system outperforms the state-of-the-art system.