Dissolved gas analysis (DGA) is widely used to detect the incipient fault of power transformers. However, the accuracy is greatly limited by selection of DGA features and performance of fault diagnostic model. This paper proposed a fault diagnostic method integrating feature selection and diagnostic model optimization. Firstly, this paper set up three feature sets with eight basic DGA gases, 28 DGA gas ratios and 36 hybrid DGA features, respectively. Then, to eliminate the interference of weak-relevant and irrelevant features, the genetic-algorithm-SVM-feature-screen (GA-SVM-FS) model was built to screen out the optimal hybrid DGA features subset (OHFS) from three feature sets. Next, using the OHFS as the input, the support vector machine (SVM) multi-classifier optimized by ISGOSVM (SVM classifier optimized by improved social group optimization) was built to diagnose fault types of transformers. Finally, the performance of OHFS and ISGOSVM diagnostic model was tested and compared with traditional DGA features and diagnostic models, respectively. The results show that the OHFS screened out is comprised of 14 features, including 12 gas ratios and two gases. The accuracy of OHFS is 3–30% higher than traditional DGA features, and the accuracy of ISGOSVM can increase by 3% to 14% compared with the SGOSVM (SVM classifier optimized by social group optimization), GASVM (SVM classifier optimized by genetic algorithm optimization), PSOSVM (SVM classifier optimized by particle swarm optimization), and SVM diagnostic models. The proposed approach integrating the OHFS with ISGOSVM achieves the highest accuracy of fault diagnose (92.86%).