Background: To implement the real-time diagnosis of the severity of patients infected with novel coronavirus 2019 (COVID-19) and guide the follow-up therapeutic treatment, We collected chest CT scans of 202 patients diagnosed with the COVID-19 from three hospitals in Anhui Province, China.Methods: A total of 729 2D axial plan slices with 246 severe cases and 483 non-severe cases were employed in this study. Four pre-trained deep models (Inception-V3, ResNet-50, ResNet-101, DenseNet-201) with multiple classifiers (linear discriminant, linear SVM, cubic SVM, KNN and Adaboost decision tree) were applied to identify the severe and non-severe COVID-19 cases. Three validation strategies (holdout validation, 10-fold cross-validation and leave-one-out) are employed to validate the feasibility of proposed pipelines. Results and conclusion: The experimental results demonstrate that classification of the features from pre-trained deep models show the promising application in COVID-19 screening whereas the DenseNet-201 with cubic SVM model achieved the best performance. Specifically, it achieved the highest severity classification accuracy of 95.20% and 95.34% for 10-fold cross-validation and leave-one-out, respectively. The established pipeline was able to achieve a rapid and accurate identification of the severity of COVID-19. This may assist the physicians to make more efficient and reliable decisions.