2023
DOI: 10.48550/arxiv.2301.10869
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

A Deep Neural Network Algorithm for Linear-Quadratic Portfolio Optimization with MGARCH and Small Transaction Costs

Abstract: We analyze a fixed-point algorithm for reinforcement learning (RL) of optimal portfolio mean-variance preferences in the setting of multivariate generalized autoregressive conditional-heteroskedasticity (MGARCH) with a small penalty on trading. A numerical solution is obtained using a neural network (NN) architecture within a recursive RL loop. A fixed-point theorem proves that NN approximation error has a big-oh bound that we can reduce by increasing the number of NN parameters. The functional form of the tra… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 37 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?