2022
DOI: 10.4018/ijdst.296249
|View full text |Cite
|
Sign up to set email alerts
|

A Deep Q-Network Eith Experience Optimization (DQN-EO) for Atari's Space Invaders and Its Performance Evaluation

Abstract: During recent years, the deep Q-Learning is used to solve different complex problems in different fields. However, Deep Q-Learning does not have a unified method for solving certain problems because different problems require specific settings and parameters. This paper proposes a Deep Q-Network with Experience Optimization for Atari’s “Space Invaders” environment called DQN-EO. Training and testing results are presented. The performance evaluation results show that while using the proposed algorithm the agent… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 23 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?