A Deep Reinforcement Learning Decision-Making Approach for Adaptive Cruise Control in Autonomous Vehicles
Dany Ghraizi,
Reine Talj,
Clovis Francis
Abstract:In the evolving automobile industry, Adaptive Cruise Control (ACC) is key for aiding autonomous traffic navigation. Ideal ACC systems can decelerate to low speeds in stop-and-go traffic, maintain a safe following distance, minimize rear-end collision risks, and lessen the driver's need to continually adjust vehicle's speed to match traffic flow. In this paper, we offer a Deep Reinforcement Learning-based adaptive cruise control (DRL-ACC) system that creates safe, flexible, and responsive car-following policies… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.