Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Astrometry from Gaia DR3 has enabled the discovery of a sample of 3000+ binaries containing white dwarfs (WD) and main-sequence (MS) stars in relatively wide orbits, with orbital periods P orb = (100–1000) days. This population was not predicted by binary population synthesis models before Gaia and—if the Gaia orbits are robust—likely requires very efficient envelope ejection during common envelope evolution (CEE). To assess the reliability of the Gaia solutions, we measured multi-epoch radial velocities (RVs) of 31 WD+MS binary candidates with P orb = (40–300) days and AstroSpectroSB1 orbital solutions. We jointly fit the RVs and astrometry, allowing us to validate the Gaia solutions and tighten constraints on component masses. We find a high success rate for the Gaia solutions, with only 2 out of the 31 systems showing significant discrepancies between their Gaia orbital solutions and our RVs. Joint fitting of RVs and astrometry allows us to directly constrain the secondary-to-primary flux ratio S , and we find S ≲ 0.02 for most objects, confirming the companions are indeed WDs. We tighten constraints on the binaries’ eccentricities, finding a median e ≈ 0.1. These eccentricities are much lower than those of normal MS+MS binaries at similar periods, but much higher than predicted for binaries formed via stable mass transfer. We present MESA single and binary evolution models to explore how the binaries may have formed. The orbits of most binaries in the sample can be produced through CEE that begins when the WD progenitor is an AGB star, corresponding to initial separations of 2–5 au. Roughly 50% of all post-common envelope binaries are predicted to have first interacted on the AGB, ending up in wide orbits like these systems.
Astrometry from Gaia DR3 has enabled the discovery of a sample of 3000+ binaries containing white dwarfs (WD) and main-sequence (MS) stars in relatively wide orbits, with orbital periods P orb = (100–1000) days. This population was not predicted by binary population synthesis models before Gaia and—if the Gaia orbits are robust—likely requires very efficient envelope ejection during common envelope evolution (CEE). To assess the reliability of the Gaia solutions, we measured multi-epoch radial velocities (RVs) of 31 WD+MS binary candidates with P orb = (40–300) days and AstroSpectroSB1 orbital solutions. We jointly fit the RVs and astrometry, allowing us to validate the Gaia solutions and tighten constraints on component masses. We find a high success rate for the Gaia solutions, with only 2 out of the 31 systems showing significant discrepancies between their Gaia orbital solutions and our RVs. Joint fitting of RVs and astrometry allows us to directly constrain the secondary-to-primary flux ratio S , and we find S ≲ 0.02 for most objects, confirming the companions are indeed WDs. We tighten constraints on the binaries’ eccentricities, finding a median e ≈ 0.1. These eccentricities are much lower than those of normal MS+MS binaries at similar periods, but much higher than predicted for binaries formed via stable mass transfer. We present MESA single and binary evolution models to explore how the binaries may have formed. The orbits of most binaries in the sample can be produced through CEE that begins when the WD progenitor is an AGB star, corresponding to initial separations of 2–5 au. Roughly 50% of all post-common envelope binaries are predicted to have first interacted on the AGB, ending up in wide orbits like these systems.
Five self-lensing binaries (SLBs) have been discovered with Kepler light curves. They contain white dwarfs (WDs) in AU-scale orbits that gravitationally lens solar-type companions. Forming SLBs likely requires common envelope evolution when the WD progenitor is an AGB star and has a weakly bound envelope. No SLBs have yet been discovered with data from the Transiting Exoplanet Survey Satellite (TESS), which observes far more stars than Kepler did. Identifying self-lensing in TESS data is made challenging by the fact that TESS only observes most stars for ∼25 days at a time, so only a single lensing event will be observed for typical SLBs. TESS’s smaller aperture also makes it sensitive only to SLBs a factor of ∼100 brighter than those to which Kepler is sensitive. We demonstrate that TESS has nevertheless likely already observed ∼4 times more detectable SLBs than Kepler. We describe a search for non-repeating self-lensing signals in TESS light curves and present preliminary candidates for which spectroscopic follow-up is ongoing. We calculate the sensitivity of our search with injection and recovery tests on TESS and Kepler light curves. Based on the 5 SLBs discovered with Kepler light curves, we estimate that (1.1 ± 0.6)% of solar-type stars are orbited by WDs with periods of 100–1000 days. This implies a space density of AU-scale WD + main sequence (MS) binaries a factor of 20–100 larger than that of astrometrically identified WD + MS binaries with orbits in Gaia DR3. We conclude that the Gaia sample is still quite incomplete, mainly because WD + MS binaries can only be unambiguously identified as such for high mass ratios.
Millisecond pulsars with white dwarf companions have typical eccentricities e ∼ 10−6 − 10−3. The eccentricities of helium white dwarfs are explained well by applying the fluctuation–dissipation theorem to convective eddies in their red giant progenitors. We extend this theory to more massive carbon–oxygen (CO) white dwarfs with asymptotic giant branch (AGB) progenitors. Due to the radiation pressure in AGB stars, the dominant factor in determining the remnant white dwarf’s eccentricity is the critical residual hydrogen envelope mass menv required to inflate the star to giant proportions. Using a suite of mesa stellar evolution simulations with Δmc = 10−3 M⊙ core-mass intervals, we resolved the AGB thermal pulses and found that the critical $m_{\rm env}\propto m_{\rm c}^{-6}$. The resulting eccentricity e ∼ 3 × 10−3 is almost independent of the remnant CO white dwarf’s mass mc. Nearly all of the measured eccentricities lie below this robust theoretical limit, indicating that the eccentricity is damped during the common-envelope inspiral that follows the unstable Roche-lobe overflow of the AGB star. Specifically, we focused on white dwarfs with median masses mc > 0.6 M⊙. These massive white dwarfs begin their inspiral with practically identical orbital periods and eccentricities, eliminating any dependence on the initial conditions. For this sub-sample, we find an empirical relation e∝P3/2 between the final period and eccentricity that is much tighter than previous studies – motivating theoretical work on the eccentricity evolution during the common envelope phase. The eccentricities of lower mass CO white dwarfs may be explained by alternative formation channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.